
Ten Most Powerful Principles by Tom Gilb Page 1 of 16

6/9/00 ©TomGilb@Result-Planning.com www.Result-Planning.com

"The Ten Most Powerful Principles for Quality in
[Software and] Software Organizations"

By
Tom Gilb

 ITSF Oct 24 2000

ABSTRACT

Software knows it has a problem. Solutions abound.

But which solutions work?

What are the most fundamental underlying principles we can observe behind
those successful solutions?

Can these principles guide us to select successful solutions and avoid time
wasters?

One hint: in observing successful software organizations in the US, the
dominant principle seems to be feedback and control.

©Tom Gilb July 2000
TomGilb@Result-Planning.com

Version 0.9 July 4 2000

1. Feedback
Rapid feedback allows rapid correction.

The single most powerful principle in practice for software engineering is
‘Feedback’: facts about how things are working. The presumption is that the
feedback is early enough to do some good. We have to have the time to make
use of the feedback in order to change direction, if necessary.
All the other principles in this paper are really feedback-supporting ideas to
help you get better control of your project.
Methods using rapid feedback succeed, those without seem to fail.
I have arrived at this conclusion by observing, for 42 working years, the
principles which both succeed for me and for others.
Experience of formal feedback methods is decades old, and many sources do
appreciate the power of these software feedback methods. But, far too many
software engineers and their managers do not seem to have any real
understanding or appreciation of these methods, and are still practicing low-
feedback methods such as reviews, Quality Function Deployment (QFD, see
ref. Akao90) testing, and Waterfall (also known as Big Bang, Grand Design)
project management. Far too many textbooks continue to present the low-
feedback methods; not from conscious rejection of high-feedback methods,
but from ignorance of well-documented and decades-old experiences.

Methods:
Here are some of the most notable high-feedback methods.

Defect Prevention Process or ‘DPP’ (equals Software Engineering
Institute CMM Level 5, see MAYS95, practiced at IBM from 1983-1985
and on).

The Defect Prevention Process is a successful way to remove the root causes
of defects. In the short term (1 year) about 50% defect reduction is
experienced, 70% reduction (compared with previously) is expected within 2-3
years and over 95% defect reduction in the 5-8 year timeframe. (Sources IBM
Experience, Raytheon Experience [DION95]). The key feedback idea, which
works here, compared to the 10 year earlier IBM failed attempts [FAGAN76],
is to ‘decentralize’ the initial defect causal analysis activity to the grass roots
programmers and analysts. This gives you true causes and realistic
acceptable change suggestions. Then, the deeper ‘cause analysis’ and
‘measured process-correction’ work is undertaken by specialized Process
Improvement Teams, outside of deadline-driven projects.
The feedback mechanisms are many; such as same-day feedback from the
people working with the specification, and early numeric process change-
result feedback from Process Improvement Teams.

Inspection (Fagan, IBM 1975)
The specification Inspection method, was originated by IBM (M. Fagan, H.
Mills (‘Cleanroom’), and R. Radice, CMM inventor).
Inspection has changed character since then. It was primarily focussed on
bug removal in code and code design documents. Today it can more cost-
effectively be used to measure Major Defect (software standards violations)
level, using sampling, of any software or upstream marketing specification

Ten Most Powerful Principles by Tom Gilb Page 3 of 16

6/9/00 ©TomGilb@Result-Planning.com www.Result-Planning.com

[Gilb93]. The defect level measurement should be used to decide whether the
entire specification can be released (exited) downstream. For example for a
‘go:no-go’ decision-making review or for further refinement (test planning,
design, coding).
The main Inspection feedback components are:
• feedback to author from colleagues regarding software standards
compliance.
• feedback to author about required levels of standards compliance in order to
consider their work releasable.

Evolutionary Project Management (Mills, IBM, Cleanroom, 1970).
Evolutionary Project Management (Evo) [Mays96, Cotton96, Gilb88, Gilb00]
has been successfully used on the most demanding space and military
projects since 1970. The US Department of Defense changed their software
engineering standard (2167a) to an Evo standard (MIL-STD-498 and then to
succeeding public standards (example IEEE) standards derived from it).
The reports (op. cit.), and my own experience, is that Evo results in a
remarkable ability to delivery on time and to budget, or better, compared to
conventional project management methods [Morris94].
Typically an Evo project is consciously divided up into small, early, frequent
stakeholder result-delivery steps. Each one cumulates towards satisfaction of
final requirements. Step size is typically weekly or 2% of total time or budget.
This results in excellent regular and realistic feedback about the team’s ability
to deliver meaningful measurable results to selected stakeholders. The
feedback includes information on design suitability, stakeholders reaction,
requirements tradeoffs, cost estimation, time estimation, people resource
estimation, and development process aspects.

Statistical Process Control (SPC): Shewhart, Deming, Juran: (from
1920’s) [Deming86].

SPC, although widely used in manufacturing, is only to a limited degree
actually used directly in software work. But some use of it will be found in
advanced uses of Inspection (Raytheon95, SEI97). The Plan Do Study (or
Check) Act cycle is widely appreciated as a fundamental feedback
mechanism.

2. Critical Measurement
If you do not focus on the few measures critical to your system, then it will fail.

It is true of any system that there are several factors which can cause them to
die. It is true of your body, your organization, your project, and your software
or service product. Doctors call such factors ‘critical factors’, and managers
call them ‘Critical Success Factors’.

We know that far too many software projects fail totally, and almost all
of them have some degree of failure, compared to initial plans and promises.
The US Department of Defense estimated that about half of their software
projects were total failures! (Source N Brown). The civil sector is no better
[Morris95].

If you analyze the critical factors which caused the failure or the
disappointments, you would get a list of factors to control better. They would
include both qualitative stakeholder values (like serviceability, reliability,
adaptability, portability, usability) and critical resources needed to deliver
those stakeholder values (like people, time, money and data quality).

You would find, for these critical factors, a series of failures to manage
more reasonably such as:
• failure to contract measurably for the critical factor
• failure to define the factor measurably
• failure to define a practical way to measure the factor
• failure to define the factor in any clear way whatsoever (buzzwords only)
• failure to design towards reaching that factors critical levels
• failure to maintain critical levels of performance during heavy loads or with
changes to the system
• failure to make the entire project team aware of the numeric levels needed
for the critical factors.
• failure to systematically identify all critical stakeholders and their critical
needs.

The critical factors start with the ‘top ten’ (most influential ones) and can in
practice be many more.

Our entire culture and literature of ‘software requirements’ systematically fails
to account for most of these critical factors (while usually accounting for a few
of them, such as performance, budget and deadline). Most of the quality
factors are not defined quantitatively at all. They can in practice always be
defined with a useful scale of measure. But, people are not trained to do this
and their managers are no exception. Our ability to define critical ‘breakdown’
levels of performance, and to manage successful delivery is destroyed from
the outset.

Ten Most Powerful Principles by Tom Gilb Page 5 of 16

6/9/00 ©TomGilb@Result-Planning.com www.Result-Planning.com

3. Multiple Objectives
If you cannot control multiple measures of quality and cost simultaneously,
then your system will fail due to the ones you did not control.

You cannot manage just a few critical software project factors, and avoid
dealing with others. You must simultaneously manage all the critical factors. If
not then the ‘forgotten factors’ will probably be the very reasons for project or
system failure. You do not have the luxury of managing qualities and costs
which you are most familiar with. You have to deal with all the potential
threats to your project, organization or system.

Most software engineers have not yet learned to specify all their critical
factors quantitatively. So the next step, tracking progress against these goals,
becomes impossible, to begin with.

 The ‘Impact Estimation Table, above, is conceptually similar to Quality
Function Deployment tables [Akao90] but it is much more objective and
numeric; and adaptable to other tasks such as (here) project tracking. It gives
a better checkable picture of reality. [Gilb88, Gilb00]. The underlying detail is
not visible here, but the % estimates are based on source-quoted, credibility
evaluated, objective documented evidence, as far as possible.

The impact estimation table can be used to evaluate ideas before their
application, and it can also be used (as in the example above) to track
progress towards multiple objectives during an Evolutionary project.

In this case the ‘Actual’ and ‘Difference” and ‘Total’ numbers represent
feedback in small steps for any chosen set of critical factors management
wishes to monitor. If the project is deviating from plans, this will be easily
visible and can be corrected on the next step.

Step #1
Plan
A:
{Design-
X,
Function
-Y}

Step
#1
Actual

Differe
-nce.
 - is
bad
+ is
good

Total
Step 1

Step #2
Plan
 B:
{Design
Z,
Design
F}

Step #2
Actual

Step #2
Differe-
nce

Total
Step
1+2

Step #3
Next
step
plan

Reliabil-
ity
99%-
99.9%

50%
±50%

40% -10% 40% 30%
±20%

20% -10% 60% 0%

Perform
-ance
11sec.-1
sec.

80%
±40%

40% -40 40 30%
±50%

30% 0 70% 30%

Usability
30 min.
-30 sec.

10%
±20%

12% +2% 12% 20%
±15%

5% -15% 17% 83%

Capital
Cost
 1 mill.

20%
±1%

10% +10% 10% 5%
±2%

10% -5% 20% 5%

Enginee
-ring
Hours
10,000

2%
±1%

4% -2% 4% 10%
±2.5%

3% +7% 7% 5%

Calend-
ar Time

1 week 2
weeks

-1week 2
weeks

1 week 0.5
weeks

+0.5
wk

2.5
weeks

1 week

4. Evolution
You must evolve in small steps towards your goals; large step failure kills the
entire effort.
And early frequent result delivery is politically and economically wise.
2% of total is a small step, that you can afford to fail on

Software engineering is by nature playing with the unknown. If we already had
exactly what we needed, the reproduction cost of software dictates re-use of
existing software. When we choose to develop software, there are many types
of unknowns which threaten the result. One way to deal with these many
unknowns is to tackle them in small increments, one at a time. If something
goes wrong, we will immediately know it. We can also retreat to the previous
level of satisfactory quality, until we understand how to progress again.

From Woodward99: one advantage of Evo is that you can focus on delivering
high value increments to critical stakeholders early. The upper line represents

high value at early stages.

It is important to note that the small increments are not mere development
increments. The point is that they are incremental satisfaction of identified
stakeholder requirements. Early stakeholders might be salespeople needing a
working system to demonstrate; system installers/help desk/service/testers
who need to work with something, and finally, early trial users.

The small increments are typically a week or so. The smallest widely reported
increments are the daily builds used at Microsoft, which are useful-quality
systems, and their 6-10 week ‘shippable quality’ milestones [CUSOMANO95].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Project Month

Project FF Cumulative Delivered Functionality Project FF Benefit / Cost

OMAR Cumulative Delivered Functionality OMAR Benefit / Cost

Ten Most Powerful Principles by Tom Gilb Page 7 of 16

6/9/00 ©TomGilb@Result-Planning.com www.Result-Planning.com

5. Quality Control
Quality Control must be done as early as possible, in planning, to reduce the
delays from late defect finding.

Use numeric Exit from development process
Like “Maximum 0.2 Majors/Page”
Use Inspection sampling to keep costs down, and to permit early, before
completion, action and learning.

There needs to be strong specification standards (like: ‘all quality
requirements must be quantified’) and rigorous checking to measure that the

rules are applied in practice. When the specs are not of some minimum
standard (like < 1 Major defect/page remaining) then they must be edited until

they become acceptable.

It is important that quality control be done very early in large works-in-
progress, for example within the first 10 pages of work. If the work is not up to
standard then the process can be corrected before more effort is wasted. I
have seen (1986, Sweden) 40,000 pages Air traffic control logic design get
‘approved’ by 7 managers for coding. But those same managers showed later
in a half day of real inspection, that I led them through, that there were about
19 logic defects per page, based on a random sample of 3 pages! Needless
to say they were seriously late.

In another case I facilitated (USA, 1999, Jet parts supplier) 8 managers
sampled 2 pages of 82 requirements pages and measured that there were
150 ‘Major’ defects per full page. Unfortunately they had failed to do such
sampling 3 years earlier when their project started, so they had already
experienced one year of delay; and told me they expected another year delay
while removing injected defects from the project. This 2 year delay was
accurately predicted from the defect density they found, and the known loss
from Major defects. They were amazed at this insight, but agreed with the
facts. In theory they could have saved 2 project years by doing early proper
quality control against simple standards (clarity, unambiguous, and not design
in requirements were all we used) as the requirements were being written, or
at least before they were used to manage the project.

These are not unusual cases. I find them on a weekly basis all over the world.
Management allows really bad specifications to go unchecked into costly
project processes. They are obviously not managing properly.

Inspection:
Meets

standards?

Software
Specification

Or code

Exited
Specification

Review:
Go No-Go?

Or other process

6. Motivation
The ‘best methods’ work only when people are motivated.

‘Drive out fear’ (Deming86)

Motivation is everything! When individuals and groups are not motivated
positively. They will not move forward. When they are negatively motivated
(fear, distrust, suspicious) they will resist change to new and better methods.

Motivation is itself a method type. In fact there are a lot of large and small
contributions to your group’s ‘sum of motivation’.

We can divide the ‘motivation problem’ into four useful categories:
• the will to change
• the ability to change
• the knowledge of change direction
• the feedback about progress in the desired change direction.

Leaders (I did not say ‘managers’) create the will to change by giving people a
positive, fun, challenge, and the freedom and resources to succeed.

John Young, CEO of Hewlett Packard during the 1980’s, inspired his troops
by saying that he thought they needed to aim to be measurably ten times
better in service and product qualities (“10X”) by the end of the decade (1980-
1989). He did not demand it. He supported them in doing it. They failed.
Slightly! They reported getting about 9.95 times better, on average, in the
decade. The company was healthy and competitive, during a terrible time for
many others, such as IBM.

The knowledge of change direction is critical, otherwise energy moves people
in the ‘wrong’ directions. In the software and systems world, this problem has
three elements:
• measurable quantified clarity of variable stakeholder requirements and
objectives
• knowledge of all the critical multiple simultaneous goals to move towards
• formal awareness of constraints, while moving towards goals; such as
resources and laws.

These elements are dealt with in other principles here, but they are a constant
problem, because:
• we do not systematically convert our ‘change directions’ into crystal clear
measurable ideas; thus permitting numeric feedback about movement in the
‘right’ direction.
 We are likely to say we need a ‘robust’ or ‘secure’ system; and less likely to
convert these rough ideals into concrete measurable defined agreed
requirements or objectives.

• we focus too often on a single measurable factor (‘% built’) when our reality
demands that we simultaneously track multiple critical factors to avoid failure
and to ensure success. We don’t get enough ‘rich’ feedback.

Ten Most Powerful Principles by Tom Gilb Page 9 of 16

6/9/00 ©TomGilb@Result-Planning.com www.Result-Planning.com

7. Process Improvement
Eternal Process improvement is necessary as long as you are in competition
(Paraphrasing Deming about PDSA cycle end).

 “The Shewhart Cycle for Learning and Improvement
The P D S A Cycle

 Act * Plan a change or a test,
aimed at improvement.

Study the results. (Do) Carry out the
change or the test
(preferably on a small
scale)

Act. Adopt the change, or Abandon it, or Run through the cycle again,
possibly under different conditions. “
Exact reproduction (- ‘(Do)’ from a letter to Tom Gilb from W. Edwards
Deming 18 May, 1991

Our conventional project management ideas strongly suggest that projects
have a clear beginning and a clear end. In our competitive world, this is not as
wise a philosophy as the one Deming suggests. We can have an infinite set of
‘milestones’, such as Evolutionary steps of result delivery, as we need. But
the moment we abandon the project; we hand opportunity to our competitors
and enemies. They can sail past our levels of performance and take our
markets.

The practical consequence is that our entire mind set must always set new
ambitious numeric ‘stakeholder value’ targets, for our organizational capability
and for our product and service capabilities. Projects must become eternal
battles to get ahead and stay ahead.

Continuous improvement efforts in the software and services area at IBM,
Raytheon and others [Mays95, Dion95, Kaplan94, HP (10X, Young)] show
that we can improve critical cost and performance factors by 20 to 1 in 5 to 8
year time frames. If we do not continually persist in doing so, our competition
gets a free shot at us.

A P

S D

8. Persistence
Years of persistence are necessary to change a culture.

W. Edwards Deming
“It takes 2-3 years to change a project, and a generation to change a culture.”

Piet Hein (Denmark)
“Things Take Time” (TTT)

“ Despite mistakes, disasters, failures, and disappointment, Leonardo never
stopped learning, exploring, and experimenting. He demonstrated Herculean
persistence in his quest for knowledge. Next to a drawing of a plow in his
notebook Leonardo proclaimed, “I do not depart from my furrow.” Elsewhere
he noted, “Obstacles do not bend me” and “Every obstacle is destroyed
through rigor.” [GELB98, p79].

In the case of Raytheon process improvements [DION95] many years of
persistent process change, for 1,000 programmers, was necessary to drop
rework costs from 43% of total software development costs, to below 5%.

Technical management needs to have a long term plan for improvement of
the critical characteristics of their organization and their products. Such long
term plans need to be numerically trackable, and to be stated in multiple
critical dimensions. At the same time visible short term progress towards
those long term goals should be planned, expected and tracked.

10 Powerful Principles. ©
Gilb@acm.org, 2000

22

Slide 22

Cost Of Quality= COConformance+CONonconformance
CONC= cost of ‘fix and check fix’.

COC=Appraisal + Prevention

Cost for doing it right

Cost for doing it wrong(ly)

1988 1989 19911990 1992 1993 1994 1995
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Project Cost = {Cost of Quality + Cost of Performance}.
Cost of Performance={Planning, Documentation, Specification}.

Philip Crosby concepts

Cost of Quality versus Time: Raytheon 95
The 8 year evolution of rework reduction.

Ten Most Powerful Principles by Tom Gilb Page 11 of 16

6/9/00 ©TomGilb@Result-Planning.com www.Result-Planning.com

9. Multiple Impacts
Any method (means, solution, design) you choose will have multiple quality
and cost impacts, whether you like them or not!

We need to estimate all impacts on our objectives.
We need to reduce, avoid or accept negative impacts.
We must avoid simplistic one-dimensional arguments.

A and B are solutions/strategies/designs, the ‘means’ by which we intend to
satisfy the ‘quality’ (stakeholder values) requirements. They each have an

effect on many of the quality requirements, and on many of the cost budgets.
The length of the bar indicates the degree of impact towards the goal or

budget level (symbolized by the arrow point).

In order to get a correct picture of how good any idea is, for our purposes, we
must
• have a quantified multidimensional specification of our quality objectives (ends,
values, good stuff) and of our budget-limited resources (people, time, money). =
Principle 3 above.
• have knowledge of the expected impact of each ‘means’ on all the ‘ends’ (qualities)
and ‘costs’
• evaluate an idea with respect to its total, expected or real, impact on our residual
(un-met) objectives and un-used cost budgets.

If we fail to use this systems engineering discipline, then we will be met with the
unpleasant surprises of delays, and bad quality, which seem to be the norm in
software engineering today.

One practical way to model these impacts is using an impact estimation table (as in
the example from Principle 3 above).

Function or
Mission

Design Idea A Design Idea B

 A

 B

 A

 B A B

 A B

 A

 B

 A B

 A B

 A B

 B A

 B A

COSTS Qualities

10. Results Orientation
You must keep your focus on the essential results, and never fall victim to the
means.

“Perfection of means and confusion of ends seem to characterize our age”

Albert Einstein.

The problems with software requirements.
One of our most common problems is that we seem unable to specify what
we really want! We have many problems there:
• we specify the ‘means’ not our true ‘ends’
• we specify unclearly (not testable, not measurably)
• we totally fail to identify key stakeholders and their needs
• we ignore specification of constraints, assumptions
• we fail to specify key quality goals at all (serviceability, recoverability,…)
• we fail to specify key economic constraints (future maintenance cost …)

Our currently published requirements specification and analysis discipline is
suited only for a program coder (‘functional requirements’), but not for a
software engineer or systems engineer.

To discover the problem we have only to ask of a specification: “Why?”, and
the answer will be a higher level of specification, nearer the real ends. There
are too many designs in our requirements!

You might say, why bother? Isn’t the whole point of software to get the code
written? Who needs high level abstractions; cut the code! But somehow that
code is late and of unsatisfactory quality. And the reason is, partly, lack of
attention to the real needs of the stakeholders and the project. We need these
high-level abstractions of what our stakeholders need so that we can focus on
giving what they are paying us for! So that we can design to find the best
technology to satisfy their needs at a competitive cost.

One day software engineers will realize that the primary task is to satisfy their
stakeholders. They will learn to design towards stakeholder requirements,
which are multiple simultaneous requirements. One day we will become real
systems engineers and realize that there is far more to software engineering
than writing code!

Ten Most Powerful Principles by Tom Gilb Page 13 of 16

6/9/00 ©TomGilb@Result-Planning.com www.Result-Planning.com

The summary principle

Motivate people
towards real results
by giving them numeric feedback frequently
and the ability to change anything for success.

It is that simple to specify. And, it is that difficult to do.

References
Akao90:Yoji Akao (Editor), "QUALITY FUNCTION DEPLOYMENT:
Integrating Customer Requirements into Product Design", Productivity
Press, Cambridge Mass. USA, 1990.

COTTON96: Cotton, Todd, “Evolutionary Fusion: A Customer-Oriented
Incremental Life Cycle for Fusion”. Hewlett-Packard Journal, August 1996,
Vol. 47, No. 4, pages 25-38. This is adapted from the book Object-oriented
Development at Work: Fusion in the Real World, by Ruth Malan et al (Eds.),
Prentice Hall PTR, 1996.
An excellent detailed view of the Evolutionary project management process as
taught Corporate-Wide at HP. The author (Todd Cotton) was on a project
team at HP in 1989 which Gilb taught early versions of the Planguage
method. See another member of that Project in MAY96.

CUSUMANO95 : Michael A. Cusumano and Richard W. Selby.: “Microsoft
Secrets : How the World’s Most Powerful Software Company Creates
Technology, Shapes Markets, and Manages People“, The Free Press (div.
of Simon and Schuster), 1995,
ISBN 0-02-874048-3, 512 pp.

DEMING86: Deming, W. Edwards, Out of the Crisis, MIT CAES Center for
Advanced Engineering Study, Cambridge MA USA-02139, 1986, ISBN 0-
911379-01-0, 507 pages , hard cover.

DION95: Raymond Dion, “The Raytheon Report”,
http://www.sei.cmu.edu/products/publications/95.reports/95.tr.017.html.
This is an update and detail of DION93. Over 80 pages. It is highly
recommended as a study of quantified process improvements.

FAGAN76: Fagan, M. E. 1976. Design and code inspections, IBM Systems
Journal 15, (3) 182-211. Reprinted IBM Systems Journal, Vol. 38, Nos. 2&#,
1999, pp. 259-287
www.almaden.ibm.com/journal

GELB98: Michael J. Gelb, How to Think Like Leonardo da Vinci, Dell
Publishing NY, 1998, ISBN 0-440-50827-4, Feb 2000 Edition Paperback.
Author email:DaVincian@AOL.com

Ten Most Powerful Principles by Tom Gilb Page 15 of 16

6/9/00 ©TomGilb@Result-Planning.com www.Result-Planning.com

GILB88: Tom Gilb, “Principles of Software Engineering Management”,
Addison-Wesley, UK/USA, 1988. 442 pages. ISBN 0-201-19246-2. Soft-
cover. £24.95.

GILB93: Gilb, T. and Graham, D, "Software Inspection", Addison-Wesley,
1993 471 pp. ISBN 0-201-63181-4. For complete corresponding Inspection
(DQC) course materials see [GILB-WWW].
Japanese Translation, August 1999, Yen 5,000
ISBN 4-320-09727-0, C3041 (code next to ISBN)
450 pages including index, softcover
akagi@kyoritsu-pub.co.jp

Gilb00: Gilb, Tom
Competitive Engineering, Addison-Wesley, UK, End 2000.

There will always be a version of this book free at my website www.result-
planning.com.

KAPLAN94: Kaplan, Craig, Clark, Ralph and Tang, Victor, Secrets of
Software Quality, 40 Innovations from IBM, McGraw Hill., ISBN 0-07-
911975-3, 383 pages.
Author email: ckaplan@iqco.com (Craig)

KEENEY92, Keeney, Ralph L., "Value-focused Thinking: A Path to
Creative Decisionmaking" (sic.)
 Paperback / Published 1996
 www.Amazon.com Price: $18.95

(Note Hardback edition is out of print: Harvard University Press, Cambridge
Mass/London 1992, ISBN 0-674-93197-1. $37.50.)

MAY96: Elaine L. May and Barbara A. Zimmer, “The Evolutionary
Development Model for Software”, Hewlett-Packard Journal, August 1996,
Vol. 47, No. 4, pages 39-45.
This is an excellent complimentary article to COTTON96. Elaine attended a
Gilb course at HP in 1989.

MAYS95: Robert Mays (slides in 12th Intl. Conference and Expo on Testing
Computer Software)

- June 12-15 1995, his lecture June 13th, Wash DC.

- “IBM Defect Prevention Process and Test”
- Note he has a full bibliography of his writings(such a central IBM SJ

No. One 1990) in this (6 items incl. his chapter in Gilb & Graham 'Software
Inspection' book, GILB93:Chapter 17)

-
Author Contact: Robert Mays 1995-

- P O Box 12195, Dept. A82, Bldg. B503, RTP NC 27709
Telephone: (919) 254 5210
Email: rmays@us.ibm.com

MORRIS94: Morris, Peter W G, THE MANAGEMENT OF PROJECTS,
Thomas Telford, London, 1994, 358 pages, ISBN 0 7277 1693 X, £55,
Publisher 1 Heron Quay, London E14 4JD. Tel. 0171-987-6999, Fax 538-
4101.

Peters00: Tom Peters,
 Reinventing Work, the project 50. Alfred A. Knopf, New York, 2000, ISBN 0-
375-40773-1. See Peters’ website www.tompeters.com, $15.95
See also his book ‘the Quick Prototype50’.
See especially his emphasis on ‘quick prototyping’ in relation to Evolutionary
project management.

SEI97: William A. Florac, Robert E. Park, Anita D. Carleton, Practical
Software Measurement: Measuring for Process Management and
Improvement.
Guidebook from Software Engineering Institute. Reference: CMU/SEI-97-HB-
003.
Downloadable from SEI web site (Acrobat Reader): ftp://ftp.sei.cmu.edu/ for
publications, and main site http://www.sei.cmu.edu. April 1997, 240 pages
This excellent free publication is based on the principles of statistical process
control taught by Shewhart and Deming. It is specifically oriented towards the
software community. It has exceptionally good advice on how to determine
process and product metrics.
Contains an Appendix by Mark Roberts of McDonnell Douglas about use of
SPC methods on Software Inspection (DQC).
Email: florac@sei.cmu.edu (William Florac),
rep@sei.cmu.edu (Robert Park),
adc@sei.cmu.edu (Anita Carleton)

Woodward99: Stuart Woodward: “Evolutionary project Management”
IEEE Computer Oct 1999, page 49-57
s.woodward@computer.org

